Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Signal Process Control ; 83: 104642, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36818992

RESUMO

In light of the constantly changing terrain of the COVID outbreak, medical specialists have implemented proactive schemes for vaccine production. Despite the remarkable COVID-19 vaccine development, the virus has mutated into new variants, including delta and omicron. Currently, the situation is critical in many parts of the world, and precautions are being taken to stop the virus from spreading and mutating. Early identification and diagnosis of COVID-19 are the main challenges faced by emerging technologies during the outbreak. In these circumstances, emerging technologies to tackle Coronavirus have proven magnificent. Artificial intelligence (AI), big data, the internet of medical things (IoMT), robotics, blockchain technology, telemedicine, smart applications, and additive manufacturing are suspicious for detecting, classifying, monitoring, and locating COVID-19. Henceforth, this research aims to glance at these COVID-19 defeating technologies by focusing on their strengths and limitations. A CiteSpace-based bibliometric analysis of the emerging technology was established. The most impactful keywords and the ongoing research frontiers were compiled. Emerging technologies were unstable due to data inconsistency, redundant and noisy datasets, and the inability to aggregate the data due to disparate data formats. Moreover, the privacy and confidentiality of patient medical records are not guaranteed. Hence, Significant data analysis is required to develop an intelligent computational model for effective and quick clinical diagnosis of COVID-19. Remarkably, this article outlines how emerging technology has been used to counteract the virus disaster and offers ongoing research frontiers, directing readers to concentrate on the real challenges and thus facilitating additional explorations to amplify emerging technologies.

2.
Comput Biol Med ; 150: 106019, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162198

RESUMO

In recent years, the global Internet of Medical Things (IoMT) industry has evolved at a tremendous speed. Security and privacy are key concerns on the IoMT, owing to the huge scale and deployment of IoMT networks. Machine learning (ML) and blockchain (BC) technologies have significantly enhanced the capabilities and facilities of healthcare 5.0, spawning a new area known as "Smart Healthcare." By identifying concerns early, a smart healthcare system can help avoid long-term damage. This will enhance the quality of life for patients while reducing their stress and healthcare costs. The IoMT enables a range of functionalities in the field of information technology, one of which is smart and interactive health care. However, combining medical data into a single storage location to train a powerful machine learning model raises concerns about privacy, ownership, and compliance with greater concentration. Federated learning (FL) overcomes the preceding difficulties by utilizing a centralized aggregate server to disseminate a global learning model. Simultaneously, the local participant keeps control of patient information, assuring data confidentiality and security. This article conducts a comprehensive analysis of the findings on blockchain technology entangled with federated learning in healthcare. 5.0. The purpose of this study is to construct a secure health monitoring system in healthcare 5.0 by utilizing a blockchain technology and Intrusion Detection System (IDS) to detect any malicious activity in a healthcare network and enables physicians to monitor patients through medical sensors and take necessary measures periodically by predicting diseases. The proposed system demonstrates that the approach is optimized effectively for healthcare monitoring. In contrast, the proposed healthcare 5.0 system entangled with FL Approach achieves 93.22% accuracy for disease prediction, and the proposed RTS-DELM-based secure healthcare 5.0 system achieves 96.18% accuracy for the estimation of intrusion detection.


Assuntos
Blockchain , Humanos , Qualidade de Vida , Tecnologia , Instalações de Saúde , Atenção à Saúde
3.
Comput Intell Neurosci ; 2022: 1051388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685134

RESUMO

Fatal diseases like cancer, dementia, and diabetes are very dangerous. This leads to fear of death if these are not diagnosed at early stages. Computer science uses biomedical studies to diagnose cancer, dementia, and diabetes. With the advancement of machine learning, there are various techniques which are accessible to predict and prognosis these diseases based on different datasets. These datasets varied (image datasets and CSV datasets) around the world. So, there is a need for some machine learning classifiers to predict cancer, dementia, and diabetes in a human. In this paper, we used a multifactorial genetic inheritance disorder dataset to predict cancer, dementia, and diabetes. Several studies used different machine learning classifiers to predict cancer, dementia, and diabetes separately with the help of different types of datasets. So, in this paper, multiclass classification proposed methodology used support vector machine (SVM) and K-nearest neighbor (KNN) machine learning techniques to predict three diseases and compared these techniques based on accuracy. Simulation results have shown that the proposed model of SVM and KNN for prediction of dementia, cancer, and diabetes from multifactorial genetic inheritance disorder achieved 92.8% and 92.5%, 92.8% and 91.2% accuracy during training and testing, respectively. So, it is observed that proposed SVM-based dementia, cancer, and diabetes from multifactorial genetic inheritance disorder prediction (MGIDP) give attractive results as compared with the proposed model of KNN. The application of the proposed model helps to prognosis and prediction of cancer, dementia, and diabetes before time and plays a vital role to minimize the death ratio around the world.


Assuntos
Demência , Neoplasias , Humanos , Aprendizado de Máquina , Neoplasias/diagnóstico , Neoplasias/genética , Transtornos Fóbicos , Máquina de Vetores de Suporte
4.
Comput Intell Neurosci ; 2022: 3606068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126487

RESUMO

Smart applications and intelligent systems are being developed that are self-reliant, adaptive, and knowledge-based in nature. Emergency and disaster management, aerospace, healthcare, IoT, and mobile applications, among them, revolutionize the world of computing. Applications with a large number of growing devices have transformed the current design of centralized cloud impractical. Despite the use of 5G technology, delay-sensitive applications and cloud cannot go parallel due to exceeding threshold values of certain parameters like latency, bandwidth, response time, etc. Middleware proves to be a better solution to cope up with these issues while satisfying the high requirements task offloading standards. Fog computing is recommended middleware in this research article in view of the fact that it provides the services to the edge of the network; delay-sensitive applications can be entertained effectively. On the contrary, fog nodes contain a limited set of resources that may not process all tasks, especially of computation-intensive applications. Additionally, fog is not the replacement of the cloud, rather supplement to the cloud, both behave like counterparts and offer their services correspondingly to compliance the task needs but fog computing has relatively closer proximity to the devices comparatively cloud. The problem arises when a decision needs to take what is to be offloaded: data, computation, or application, and more specifically where to offload: either fog or cloud and how much to offload. Fog-cloud collaboration is stochastic in terms of task-related attributes like task size, duration, arrival rate, and required resources. Dynamic task offloading becomes crucial in order to utilize the resources at fog and cloud to improve QoS. Since this formation of task offloading policy is a bit complex in nature, this problem is addressed in the research article and proposes an intelligent task offloading model. Simulation results demonstrate the authenticity of the proposed logistic regression model acquiring 86% accuracy compared to other algorithms and confidence in the predictive task offloading policy by making sure process consistency and reliability.


Assuntos
Algoritmos , Computação em Nuvem , Simulação por Computador , Modelos Logísticos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...